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Crude oil and refinery fraction prices are volatile. The literature has suggested hedging as one of the means to address 
such volatility. Most methods for hedging can be categorized as Ordinary Least Squares (OLS) based, 
based, or Volatility based. 
This study sought to compute and compare various methods for the optimal hedge ratio (OHR) for crude oil, gasoline 
and heating oil.Data on the spot and futures prices of crude oil, gasoline and heating oil were obtained from the Energy 
Information Administration (US EIA) database. The opt
based Regression, Volatility based Regression, and the Kalman Filter to facilitate a comparison of the effectiveness of 
the hedging methods employed. This study makes a contribution to the litera
hedging effectiveness based on changing the OHR into a portfolio weight and minimizing the variance of the portfolio.
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INTRODUCTION 

 
From June 2014 to January 2015, the price of crude oil collapsed from US $105.79/bbl to US $47.22/bbl, a 55.36% 
decline. Such sudden decline in oil prices is not a new phenomenon with oil prices. In 2008, oil prices experienced a 
sudden decline in response to the global economic recession. It declined from its highest peak of US 136.49/bbl in June 
2008 to US $37.43 in January 2009, from US $70.5/bbl in August 2006 to US $54.5 by January 2007, and from US 
$38/bbl in October 1990 to US $17.43 in February 1991. Ev
experienced sudden and rapid decline (US EIA 2016). Such decline in oil prices can result in decline in revenue for oil 
producers.  

In the literature, one method that has been identified to offset the risk
movement is hedging with futures. A futures contract is an agreement between two parties to buy and sell a given 
amount of a commodity at a specific price and location (Chang et al. 2011). Futures contracts should not 
with forward contracts.A forward contract is also an agreement between parties to buy or sell a commodity or asset at a 
specific time at a given price. However, futures contracts are standardized and exchange
private agreements between two parties; they tend to be specialized/ customized, and carry a possibility of default. 
Futures contracts also carry no risk of default because the exchange acts as a counterparty, guaranteeing delivery and 
payment (Bacon and Kojima 2008; Chang et al. 2011). Futures contract are widely used because of their high liquidity, 
speed, and low transaction costs. Moreover, they are used frequently in the oil and refinery fraction industry since that 
industry has high price risk.An oil or refinery company would consider the hedging with futures if they want to reduce 
their oil price risk. If the government of a petroleum exporting country do not directly sell crude oil and refinery fraction
then the government would not engage in hedging. T
crude oil or refinery fractions (Bacon and Kojima 2008).

Any economic agent considering hedging with futures must decide on the optimal amount of output to hedge due to 
the problem of basis risk.Basis risk is the risk that there can be excess loss or gains from hedging because of the 
imperfect negative correlation between the underlying and the hedge asset (Haushalter 2000; Knill et al. 2006). Two 
asset prices (spot A spot market is one in which th
commodity to be delivered immediately and futures) may not be 100% perfectly correlated. Therefore, a hedging 
strategy will not be 100% effective since the price changes will not be in entir
the case of spot and futures, their prices may not converge at the maturity of the futures. This imperfect correlation or 
basis risk creates the potential for a hedging strategy to cause excess gains or losses.
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re volatile. The literature has suggested hedging as one of the means to address 
such volatility. Most methods for hedging can be categorized as Ordinary Least Squares (OLS) based, 

compare various methods for the optimal hedge ratio (OHR) for crude oil, gasoline 
and heating oil.Data on the spot and futures prices of crude oil, gasoline and heating oil were obtained from the Energy 
Information Administration (US EIA) database. The optimal hedge is estimated by the methods of OLS, Cointegration 
based Regression, Volatility based Regression, and the Kalman Filter to facilitate a comparison of the effectiveness of 
the hedging methods employed. This study makes a contribution to the literature as it proposes a new method to assess 
hedging effectiveness based on changing the OHR into a portfolio weight and minimizing the variance of the portfolio.
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June 2014 to January 2015, the price of crude oil collapsed from US $105.79/bbl to US $47.22/bbl, a 55.36% 
decline. Such sudden decline in oil prices is not a new phenomenon with oil prices. In 2008, oil prices experienced a 

the global economic recession. It declined from its highest peak of US 136.49/bbl in June 
2008 to US $37.43 in January 2009, from US $70.5/bbl in August 2006 to US $54.5 by January 2007, and from US 
$38/bbl in October 1990 to US $17.43 in February 1991. Even in the 1980s there were periods when oil prices 
experienced sudden and rapid decline (US EIA 2016). Such decline in oil prices can result in decline in revenue for oil 

In the literature, one method that has been identified to offset the risk of adverse commodity and asset price 
movement is hedging with futures. A futures contract is an agreement between two parties to buy and sell a given 
amount of a commodity at a specific price and location (Chang et al. 2011). Futures contracts should not 
with forward contracts.A forward contract is also an agreement between parties to buy or sell a commodity or asset at a 
specific time at a given price. However, futures contracts are standardized and exchange-traded. Forward contracts are 

te agreements between two parties; they tend to be specialized/ customized, and carry a possibility of default. 
Futures contracts also carry no risk of default because the exchange acts as a counterparty, guaranteeing delivery and 

2008; Chang et al. 2011). Futures contract are widely used because of their high liquidity, 
speed, and low transaction costs. Moreover, they are used frequently in the oil and refinery fraction industry since that 

finery company would consider the hedging with futures if they want to reduce 
their oil price risk. If the government of a petroleum exporting country do not directly sell crude oil and refinery fraction
then the government would not engage in hedging. The hedging would only be performed by a company selling the 
crude oil or refinery fractions (Bacon and Kojima 2008). 

Any economic agent considering hedging with futures must decide on the optimal amount of output to hedge due to 
asis risk is the risk that there can be excess loss or gains from hedging because of the 

imperfect negative correlation between the underlying and the hedge asset (Haushalter 2000; Knill et al. 2006). Two 
asset prices (spot A spot market is one in which the economic agent pays for the asset or commodity, and expects the 
commodity to be delivered immediately and futures) may not be 100% perfectly correlated. Therefore, a hedging 
strategy will not be 100% effective since the price changes will not be in entirely opposite directions from each other. In 
the case of spot and futures, their prices may not converge at the maturity of the futures. This imperfect correlation or 
basis risk creates the potential for a hedging strategy to cause excess gains or losses. 
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Several methods have been used to empirically compute the optimal hedge. Such methods generally fall in the following 
categories: (a) Ordinary Least Squares (OLS);(b)Cointegration based models; and(c) Volatility models. 

The objective of this study is to compute and compare different methods that can be used to compute the optimal 
hedge ratio (OHR) for crude oil, gasoline and heating oil. This study makes a contribution to the literature as it proposes 
a new method to assess hedging effectiveness.  

This study is structured as follows: Section two provided a literature review of hedging, section three reviewed the data 
that was used to compute the OHR. Section four reviewed the methodology used to estimate the OHR. Section five 
presented the results. Section six presented the conclusion. 
 
 
LITERATURE REVIEW 

 
Johnson (1960) explained the mechanics of hedging and sought to apply portfolio theory to reform the hedging theory. If 
an economic agent has created a portfolio of spot and futures, then the optimal hedge ratio is the ratio of the amount of 
spot and futures that will ensure that the value of a portfolio does not change (Hatemi-J and Roca 2006).  
 �� = ��� − ��	          (1) ∆�� = ��∆� − ��∆	         (2) 

 
where	�� is the value of the portfolio that has been hedged, �� is the quantity of spot, �� is the quantity of futures, � is 

the spot price, 	 is the futures price, and ∆ is the change in one of the variables.  
Equation (1) was converted into changes in equation (2) because the source of uncertainty is the price. The change in 

spot prices from one period to the next is given by ∆�. The change in futures prices from one period to the next is given 
by ∆	. ∆� = �� − ���and ∆	 = 	� − 	��.  
The objective of the hedging strategy is that there should be no change in the value of the portfolio. This can be 
represented by setting�� to 0. Then: 
 ���� = ∆�∆�           (3) 

Let the optimal hedge, ℎ = ���� , therefore ℎ = ∆�∆� 
 
Therefore, the hedge ratio h can be obtained as the gradient parameter in a regression where the spot price of a refinery 
fraction is regressed on the futures price of refinery fraction.  
Substituting equation (3) into equation (2) ∆�� = ��(∆� − ℎ∆	)         (4) 
The optimal hedge ratio will be the one that minimizes the risk of the possible change in the value of the portfolio. The 
risk can be measured by the variance of equation (4). This is given by: ��������(∆��) = ���(��� + ℎ���� − 2ℎ"����)      (5) 

where��� is the variance of ∆�, ��� is the variance of ∆	, " is the correlation between ∆	 and ∆�. To minimize the 

variance of ∆�� with regards to h, a partial derivate is performed: #$%&(∆'()#� = ���)2ℎ��� − 2"����* = 0      (6) 

This results in an OHR defined by ℎ∗ = " -�-�          (7) 

Ederington (1979) improved on Johnson (1960) formulae for hedging effectiveness. Hedging effectiveness is the percent 
reduction of the variance of the portfolio; it is defined by the formula  . = 1 − $%&(0)$%&	(1)          (8) 

whereE is the hedging effectiveness, ���(2) is the variance of the hedge position (variance of futures returns), and ���(3) is the variance of the unhedged position (variance of spot returns).  
Substituting the minimum variance 4� produces: . = 1 − 567-∆67 (�87)567-∆67 = "�         (9) 

where "� is a square of the correlation coeffiicent of spot and futures price changes and �∆��  is the variance of spot price 
changes. In other words, R

2
 from the regression of spot on futures prices is used as a measure of hedging effectiveness.  

Ederington (1979) MVHR assumes that investors are infinitely risk averse. While such an assumption is unrealistic, it 
was an improvement over the naïve hedging strategy. Thus, the first set of optimal hedge ratios which were estimated 
by Johnson (1960); Stein (1961); and Ederington (1979) was the coefficient from the OLS regression:  
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 9� =	∝ +;<� + =�         (10) 
where9� is the spot price, <� is the futures price, ∝ is a constant, ; is the optimal hedge ratio and =� is the error term of 
the regression. The beta (;) optimal hedge ratio performs similarly to the 1:1 naïve hedge strategy where the risk averse 
economic agent takes a futures position that is opposite to the spot position. Sometimes the OLS OHR method is 
referred as the Johnson-Stein-Ederington (JSE) method (Ji and Fan 2011). 

Financial assets tend to be non-stationary. The estimation of parameters with non-stationary variables can lead to 
spurious regression results. However, if variables share a long term cointegrating relationship, parameters may be better 
estimated by the incorporation of an error correction term in the regression equation (Engle and Granger, 1987; Brooks, 
2008). The estimation of the optimal hedge ratio via OLS methods that ignore the non-stationary and cointegrating 
relationship of spot and futures tend to result in the under estimation of the hedge ratio (Ghosh, 1993; Da-Hsiang 1996; 
El-Khatib, and Hatemi 2011). Ghosh (1993) also argued that OLS ignores lead-lag relationships contained within spot 
and futures prices, and may lead to misspecification. Myers and Thompson (1989) used a cointegration approach to 
estimate the optimal hedge. It is given by: ∆9� =∝>+ ?∆<� +	∑ ;>ABAC� ∆9�A +∑ D>EFEC� ∆<�E + G>H�� + =>�  (11) 

where ∆9� is the first difference of the spot price, ∆<�is the first difference of the futures price, H�� is the error correction 
term, ? is the estimate of the optimal hedge ratio that will minimize the variance G. 

Also, the presence of serial correlation in the residual, and the presence of heteroscedasticity lead to the inaccurate 
estimation of the optimal hedge ratio under OLS estimation (Park and Bera 1987; Herbst et al. 1993). An additional 
limitation of both OLS based and cointegration based methods for the derivation of the optimal hedge ratio is that such 
methods produce an OHR that is time invariant. However, it is widely accepted that financial assets returns, volatility, 
covariances, and correlations are time varying (Kroner and Sultan 1993). Other authors argued that if the joint 
distribution of spot and futures vary over time, then the estimation of constant hedge ratio would be inappropriate 
(Bollerslev 1990; Baillie and Myers 1991; Kroner and Sultan 1990).  

Subsequently, some papers utilize Generalized Conditional Heteroscedasticity (GARCH) type models to capture the 
time varying properties while computing the optimal hedge. In such models, the OHR is specified as the ratio of the time 
varying covariance of spot and futures to the conditional variance of futures. 

Chang et al. (2011) used the CCC-GARCH, VARMA-GARCH, DCC-GARCH, BEKK-GARCH and diagonal BEKK-
GARCH to compute the OHR for Brent and WTI futures. They also computed the optimal portfolio weights, and used a 
hedging effectiveness index to compare the performance of the OHR estimated via the different models. They found that 
the diagonal BEKK was the best model for the computation of the OHR, while the BEKK was the worst model for 
computing the OHR. Hsu et al. (2008) used a GARCH with error correction model to compute the OHR; they found that 
this model improved the hedging effectiveness.  

Wang et al. (2010) used a Kalman Filter error correction model (KF-ECM) to compute the OHR for nineteen stocks 
from the Taiwan stock exchange over the January 05, 1995 to February 28, 2009 period. In particular, they used the 
Kalman Filter to extract the common trend among Taiwan weighted stock index (TAIEX) and TAIEX futures. They then 
combined the common stochastic trend with an error correction model, and compared the OHR from the KF-ECM to the 
OHR derived from OLS, GARCH, and vector error correction models (VECM). They found that the OHR derived from 
the KF-ECM had a better hedging effectiveness than that derived from OLS, GARCH and VECM.  

It must be notedthere is a dearth of information on using the Kalman Filter to compute the optimal hedge ratio for 
crude oil or its refinery fractions. This study intends to fill such gap. 

To compare the hedging effectiveness of different volatility models, Ku et al. (2007) proposed the following hedging 
effectiveness index: 2. = $%&IJ(KLMKL$%&(KLMKL$%&IJ(KLMKL         (12) 

where2. is the hedging effectiveness index, ���NF�OPQOP is the variance of the spot or the unhedged position, and ����OPQOP is the variance of the hedged position. However, equation (12) is the same as equation (8). 

Other authors have used equation (12) or (8) to assess hedging effectiveness (Andani et al. 2009; Zanotti at al. 2010; 
Yao and Wu 2012; Kumar 2014). 
 
 
3.0 DATA USED FOR COMPUTING THE OHR 

 
Data on WTI futures prices, gasoline futures prices and heating oil futures prices were obtained from the Energy 
Information Administration (US EIA) database. Weekly Cushing, OK Crude Oil Future Contract 1 was used as the proxy 
for oil futures.  Weekly New York Harbor Reformulated RBOB Regular Gasoline Future Contract 1 was used as the 
proxy for gasoline futures prices. Weekly New York Harbor Conventional Gasoline Regular Spot Price FOB was used as 
the proxy for gasoline spot prices. Weekly New York Harbor No. 2 Heating Oil Future Contract 1 was used as the proxy 
for heating oil futures. Weekly New York Harbor No. 2 Heating Oil Spot Price FOB was used as the proxy for heating oil 
spot prices. 
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For WTI, weekly spot and futures prices over the 3rd January 1986 to 8th April 2016 period were used; this produced 
1580 observations per variable. For gasoline prices, weekly spot and futures data over the 3rd March 2006 to 8th April 
2016 period were used; this produced 528 observations per variable. For heating oil prices, weekly spot and futures data 
over the period 6th June 1986 to 8th April 2016 were used: this resulted in 1558 observations per variable.   
 
 
4.0 METHODOLOGY  
4.1 Computing the OHR 

 
The empirical analysis of this study is divided into two phases. Phase one involved pretesting. A log transformation is 
applied to all variables that are subsequently tested for stationarity using the Augmented Dickey Fuller (ADF), the 
Phillips Perron (PP), the Perron (1997) and Zivot and Andrews (1992) tests. Where the data were found to be non-
stationary, the spot and futures prices for each commodity were tested for cointegration.  

The Engle Granger two-step method, the Johansen method, the Phillips–Ouliaris method and an augmentation of the 
Gregory Hansen method are used to test for Cointegration. Phase two involved the use of econometric models to 
estimate the OHR. The following methods were used to compute the OHR: OLS, ARDL-ECM, DCC-GARCH-ECM, and 
the Kalman Filter. An interested reader is referred to Appendix 1 for a detailed discussion of the OLS, ARDL, GARCH 
and the Kalman Filter methodologies.  

In keeping with the objective of this study, the opitmal hedge is estimated by the methods of OLS, ARDL-ECM, 
Copula-EGARCH, and the Kalman Filter to facilitate a comparison of the effectiveness of the hedging the methods 
employed.  

 
4.2 Hedging effectiveness 

 
This study proposes a new method to assess hedging effectiveness (HE) based on changing the OHR into a portfolio 
weight.In a two asset portfolio of spot and futures, the portfolio weight for spot would be the percentage of spot in the 
portfolio. Likewise, the portfolio weight for futures is the percentage of futures in the portfolio. The two weights must sum 
to unity. If the portfolio weights are a function of the OHR, then they should directly change as the OHR changes. 
Hammoudeh et al. (2009) proposed that the optimal portfolio weight should be given by: R��,� = ��,T���,T��,T����,TU��,T         (13) 

R��,� = V 0R��,�1 W , �<R��,� , 0�<	0 < R��,� < 0�<R��,� > 0        (14) 

where R��,� is the weight of spot, 1 − R��,� is the weight of futures, ℎ�,� is the variance of futures, ℎ�,� is the variance of 

spot, and ℎ��,� is the covariance of spot and futures.  

However, such optimal portfolio weight do not consider the OHR that was estimated via different methods. This study 

proposes the weight for spot will be R� = �(�UZ0[) and the weight for futures will be R� = Z0[(�UZ0[) . Such weights were 

choosen because the OHR indicates how much units of futures should be used to offset one unit of spot. Assume that x 
units of futures were estimated via the OHR. Then such a portfolio should have 1 unit of spot and x units of futures. 

Therefore, the amount of spot in that portfolio would be 
��U\ while the amount of futures in that portfolio would be 

\�U\ . 
After the portfolio weight is estimated, the variance of the portfolio can be computed using the following formula: 

 �>� = ](R����� + (1 − R�)���� + 2R�(1 − R�)�"�,�����)    (15) 

 
Equation (15) is the Variance of the Portfolio formula with ρ replaced by the Copula (cρ) which captures a better 
dependence than correlation (de Melo et al. 2004; Wang et al. 2009; Wang and Cai 2011). This study proposes that the 
model that computes the OHR and produces the smallest variance will have the highest hedging effectiveness. This 
logic is consistent with minimizaton of the portofolio hedgeing strategy (McAleer 2010).  
 
 
5.0 EMPIRICAL RESULTS 
5.1: Pretesting 

 
The results from the ADF, PP, Peron stationarity tests are presented in Table 1.The results suggest that all the prices 
are non-stationary with a unit root.  
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                                                                                       Table 1: Stationarity tests results 

  ADF 
level 

ADF 1
st
 

difference 
PP level  PP 1st 

difference 
P ZA 

WTI spot 0.3654 0.0000 0.4635 0.0000 -4.62 0.0085 
WTI 
futures 

0.5639 0.0000 0.5101 0.0000 -4.06 0.0053 

Gasoline 
spot 

0.1098 0.0000 0.1638 0.0000 -4.10 0.0018 

Gasoline 
futures 

0.1029 0.0000 0.1263 0.0000 -4.06 0.0028 

Heating 
oil spot 

0.4080 0.0000 0.4353 0.0000 -3.61 0.0062 

Heating 
oil futures 

0.4596 0.0000 0.4741 0.0000 -3.59 0.0044 

 
 
The data was tested for ARCH effects to verify if a volatility model would be relevant for modelling. In the test for ARCH 
effects, the null hypothesis states that no ARCH effects exist. The alternative hypothesis states that ARCH effects exist. 
For each return, the probabilities of the F statistic and the Chi-Square statistic were less than the 1% significance level. 
Such results lead to the rejection of the null hypothesis and indicated that each return has ARCH effects; accordingly, 
GARCH type modeling is appropriate for modeling the optimal hedge ratio (OHR) (Table 2).  
 
 

Table 2: ARCH effects 

Variable Test Statistic Probability 
WTI spot returns Prob. F(1,1577)  0.0000 
 Prob. Chi-Square(1) 0.0000 
WTI futures returns Prob. F(1,1577)  0.0000 
 Prob. Chi-Square(1) 0.0000 
Gasoline spot returns Prob. F(1,525) 0.0000 
 Prob. Chi-Square(1) 0.0000 
Gasoline futures returns Prob. F(1,525) 0.0000 
 Prob. Chi-Square(1) 0.0000 
Heating oil spot returns Prob. F(1,1555) 0.0000 
 Prob. Chi-Square(1) 0.0000 
Heating oil futures returns Prob. F(1,1555) 0.0000 
 Prob. Chi-Square(1) 0.0000 

 
 
Since the data is non-stationary, it is tested for cointegration. The results from the cointegration test presented in Table 3 
suggest that spot and futures prices are cointegrated for WTI, gasoline, and heating oil, respectively. Such cointegration 
result implies that cointegration type modelling is relevant for the spot and futures data.  
 

 
Table 3: Cointegration results 

 EG PO Johansen1 
coint vect. 

GHThe critical values used 
for the GH test are the critical 
values from the LS test.   

WTI spot and futures 0.0000 0.0000 0.2086 -34.05 

gasoline spot and futures 0.0000 0.0000 0.1040 -6.15 

Heating oil spot and futures 0.0000 0.0000 0.1347 -10.90 

 
 
5.2 Estimation of OHR, OPW and Variance of Portfolio using different methods 
 
The OLS, ARDL-ECM, Copula-EGARCH, and the Kalman Filter all suggested that the Naïve Hedging Strategy is the 
most appropriate for hedging crude oil (Table 4). Since the hedging effectiveness method used in this study is based on 
the OHR, all methods employed had the same hedging effectiveness for WTI. Thus, for crude oil, $1 of futures can be 
used to hedge $1 of spot. Such result will produce an OPW close to 0.5 since 50% of the portfolio will be held by spot, 
and another 50% will be held by futures.  The OHR results for WTI imply that the futures market is functioning efficiently, 
since the OHR will be close to unity if the market is efficient. 

In the rows illustrating the OHR, the number is brackets is the _̂�.Appendix 2, illustrates how the OHR was computed 
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using the Copula EGARCH. 

With regards to gasoline, the Copula-EGARCH method produced the lowest variance of the portfolio and thus had the 
highest hedging effectiveness. The OLS method had the second highest hedging effectiveness and the ARDL-ECM had 
the lowest hedging effectiveness. Since the ARDL-ECM also recommended an OHR greater than unity, it had 
recommended an over hedged ratio. The Copula-EGARCH method recommended an OHR of 0.7261 implying that 
$0.73 in futures is required to offset every dollar held in the spot position for gasoline. 

For heating oil, the Copula-EGARCH also had the highest hedging effectiveness. The ARDL-ECM had the lowest 
hedging effectiveness. Since the ARDL-ECM also estimated an OHR greater than unity, it recommended an over 
hedged ratio. The OLS and the Kalman Filter had the same hedging effectiveness since they produced an OHR of 0.99, 
which is relatively close to the naïve hedge. Consequently, $0.77 should be held in futures to offset every dollar held in 
spot for heating oil.   

For gasoline, the OLS model suggested an OHR of 0.91. The ARDL-ECM suggested an OHR of 1.76. In fact, the 
ARDL-ECM results for gasoline and heating oil implied an over hedge.  The Kalman Filter results for all variables 
wereclose to the Naïve Hedging Strategy. The Copula-EGARCH suggested an OHR of 0.72 for gasoline, and 0.74 for 
heating oil. The Copula-EGARCH had the highest hedging effectiveness as it had the smallest portfolio variance. 
Subsequently, $0.72 should be held in futures to optimally hedge every dollar held in spot for gasoline. Also, $0.74 
should be held in futures to optimally hedge every dollar held in spot for heating oil. 
 
 

Table 4: OHR, OPW and Variance of Portfolio using different methods. 

OHR  

  WTI Gasoline Heating oil 

OLS 0.99 (0.9308) 0.91 (0.8106) 0.99 (0.8410) 

ARDL-ECM 1.00 (0.9815) 1.76 (0.7250) 1.07 (0.9987) 

Copula-EGARCH 0.9993 0.7261 0.7742 

Kalman Filter 0.99 0.98 0.99 

OPW  

  WTI Gasoline Heating oil 

OLS 0.4974 (futures) 0.4764 (futures) 0.4974 (futures) 

ARDL-ECM 0.5 (futures) 0.6377 (futures) 0.5169 (futures) 

Copula-EGARCH 0.4998 (futures) 0.4207 (futures) 0.4364 (futures) 

Kalman Filter 0.4974 (futures) 0.4949 (futures) 0.4974 (futures) 

Variance 
of 
Portfolio   

  WTI Gasoline Heating oil 

OLS 16.6568 0.3315 0.3769 

ARDL-ECM 16.6568 0.3482 0.3797 

Copula-EGARCH 16.6568 0.3255 0.3274 

Kalman Filter 16.6568 0.3334 0.3769 

 

 
6.0 CONCLUSIONS 

 
Crude oil and its refinery fraction prices are volatile. Though upward price movement is favored by the producer of the 
commodities, negative price movement is highly undesirable. The literature has identified hedging with futures contracts 
as one possible method for a risk adverse commodity producer to protect itself from commodity price risk.  

WTI spot was shown to have a high dependence onWTI futures. In addition, all methods recommended an OHR close 
to the Naïve Hedge Strategy. Thus, all four methods yielded similar hedging effectiveness. 

For gasoline and heating oil, the results identified the Copula EGARCH to be the superior method since it produced 
the lowest variance of the portfolio.  

Although Kalman Filter was recommended to compute the OHR in Wang et al. (2010), our results show that it is not 
the most effective method in the refinery fraction industry. The Copula-EGARCH was proven to be the best method for 
computing the OHR for the refinery fraction industry. The Copula-EGARCH recommends an OHR close to the naïve 
hedge for WTI; 0.7261 for gasoline; and 0.7742 for heating oil. The Copula-EGARCH recommended an OPW of 0.4998 
for WTI futures; 0.4207 for gasoline futures and 0.4364 for heating oil futures.  

Such findings in this study have implications for policy. Companies producing and exporting gasoline and heating oil 
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may use the OHR estimated from the Copula-EGARCH to take the short term position. However, such hedges would be 
favorable when the prices of gasoline and heating oil are declining. When the price of the refinery fractions prices 
rebound, such hedges should not be undertaken since hedging would reduce their profitability. 
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APPENDIX1 

 
Detailed Review of Methodology used to estimate the OHR 
 
In this study multiple models: the OLS, ECM, GARCH, and the Kalman Filter models were used to estimate the OHR for 
crude oil, gasoline, and heating oil.  
Model 1: Classical Linear Regression Model 
OLS is a well-known model. For details see Brooks (2008). The OLS method is a linear regression of changes in spot 
prices on changes in futures prices. It will take the following form: ∆�� = ab + ;∆	� + =�         (A.01) 
where∆�� is the first difference of spot prices, ab is an intercept, ∆	� is the first difference of futures prices, ; is the OHR 
and =� is an error term.  
Model 2: ARDL-ECM 
ARDL-ECM is an Auto Regressive Distributive Lag (ARDL) model with an error correction term to account for 
cointegration. An ARDL is similar to an OLS model; however, it contains lags of variables, whereas an OLS do not 
contain lags. The ARDL-ECM deployed takes the following form:  ∆�� = ab + ?∆	 +	;�∆��� + ;�∆	�� + G�H�� + =�     (A.02) 
where ? is the OHR,  ∆��� is the lag of the first difference of spot prices, ∆	�� is the lag of the first difference of futures 
prices, H�� is the error correction term, ;�, ;�, and G� are respective coefficients.  
Model 3: Copula-GARCH 
The GARCH model is a method used to model the time varying conditional variance of a time series. A GARCH (1,1) 
model is given by: �� = ab + a�c��� + 	;����         (A.03) 
where�� is the conditional variance; ab is the meannewsabout volatility from the previous period. Kenourgios et al. 
(2001) stated that the OHR will also be ab. The ARCH term is c��� which is also a lag of the error term from the mean 
equation; ����  is a lag of the conditional variance (the GARCH term); a� and ; are coefficients of the lag of the squared 
error and lagged conditional variance respectively, which were obtained by estimation. If a� + ; ≥ 1 then shocks take 
long to die out.If a�+ ; = 1, then there is a unit root in the GARCH model. In such a case an Integrated GARCH 
(IGARCH) model can be used to model the volatility. 
The GARCH (q,p) model fails to capture asymmetric effects. Also a restriction need to be imposed upon the GARCH to 
prevent the conditional variance from becoming negative if its estimated a�and ; coefficients are large and negative. To 
correct such limitations, Nelson (1991) proposed an Exponential GARCH (EGARCH) model given by:  

e�(��) = f + ; ln(���� ) + D NTij
]-Tij7 + a k|WNTij|W]-Tij7 − ]�mn      (A.04) 

However EVIEWS modifies equation (A6.04) to: log(��) = f + ∑ aAqAC� rNTis-Tisr + ∑ ?t&tC� NTiu-Tiu + ∑ ;E log	(��E� )>EC�     (A.05) 

wheree�(��) is the log transformation that has been applied to the variance; f is a constant; α is the coefficient 
associated from the size/magnitude of shock effect, λ is the coefficient associated with the sign or leverage effect, and β 
is the coefficient for the persistence of shocks (the GARCH term). If the leverage effects are positive (negative) and 
statistically significant, then negative (positive) shocks will increase volatility more than positive (negative) shocks of the 
same magnitude.  
The Constant Conditional Correlation (CCC)-GARCH is a multivariate GARCH. It is typically a preferred to the BEKK 
GARCH model since it is parsimonious, while the BEKK has a lot of parameters to estimate. The CCC-GARCH model 
first estimates two univariate GARCH model for two variables. Then it takes the standardized residuals from each 
GARCH volatility estimation to estimate correlation. In the CCC-GARCH, the researcher specifies ℎ�,�� = ab� + a�=�,��� + ;�ℎ�,���         (A.06) ℎ�,�� = ab� + a�=�,��� + ;�ℎ�,���         (A.07) 

2� = v ℎ�,�� ℎ��,�ℎ��,� ℎ�,�� w = xℎ�,� 00 ℎ�,�y x1 "" 1y xℎ�,� 00 ℎ�,�y = z�^z�    (A.08) 

where�� is spot prices, 	� is futures prices,  ℎ�,��  is the variance of ��, ℎ�,��  is the variance of 	�, R is the correlation matrix, 

and z� = xℎ�,� 00 ℎ�,�y. Also 

{2^ = ���,T��,T7           (A.09) 
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The limitation of the CCC-GARCH is its assumption that the correlation will be constant. Correlation between two series 
may change with time as posited by Engle and Sheppard (2001). Engle and Sheppard (2001) and Engle (2002) 
subsequently proposed the Dynamic Conditional Correlation (DCC)-GARCH which is almost identical to the CCC-
GARCH. It is given by  2� = z�^z�          (A.10) 
However, its correlation matrix R is time varying. In other words the DCC-GARCH estimates two correlation matrices for 
the difference time periods to join the two univariate GARCH models.  
The DCC-GARCH and CCC-GARCH models are limited in that they are based on correlation. Under extreme market 
conditions, correlation based measures and measures based on the Gaussian distribution are unreliable (Malevergne 
and Sornette2006).Additionally,correlation based measures can yield spurious relationships (Aas 2004; Malevergne and 
Sornette 2006).Thus, what is really needed in finance is models that can perform well under both normal market 
conditions and extreme market conditions.  
One such model is a copula. A copula essentially “joins together” different distributions. Copulas were introduced in 
financial applications by Embrechts et al. (1999). Since then, they have been widely used. Some of their applications 
can be seen by the works of Embrechts et al. (2002), de Melo et al. (2004), Dias and Embrechts (2004). 
According to Sklar (1959), every p-dimensional distribution F that has a marginal distribution Fi, has a copula C, such 
that: 	)|�, … . , |>* = �(	(|�), … , 	)|>*)       (A.11) 

According to Vogiatzoglou (2010) this may be rewritten as: �)c�, … , c>* = 	(	��(c�), … , 	>�)c>*)      (A.12) 

wherecA = 	A(|A), and i ranges from 1 to p, p is the dimension 
If the function F is p-times differentiable, then the joint function may be derived by: <(|) = #>#\j#\7…#\� 	(|)        (A.13) 

= ∏ <A(|A)>AC� #>#\j#\7…#\� �(	(|�), … , 	)|>*)	     (A.14) 

where f(x) is the joint density function. Thus <(|) = ∏ <A>AC� (|A)	�(	(|�), … , 	)|>*)      (A.15) 

The copula density function that is obtained is: �)c�, … , c>* = �(�jij(Nj),…,��ij)N�*)∏ �s�s�j (��ij(Ns))        (A.16) 

where| = (|�, … , |>) and the copula density function is c.  

The parameters of the copula may be estimated by the optimization of the log-likelihood function �(�; |) = ∑ (∑ e���AC� (<A)|A,�; �A*)�EC� + log	(�)	�)|�,�*, … , 	>)|>,�*; G*)   (A.17) 

where � = (�, 0). It is the vector that holds the copula estimates G and the marginal distribution estimates �. The 
marginal estimates likelihood function is given by  ��(�; |) = ∑ ∑ e���AC� (<A)|A,�; �A*�EC�       (A.18) 

The copula likelihood function is given by: ��(G; c; �) = log	(�)	�)|�,�*, … , 	>)|>,�*; G*)     (A.19) 

In this study, a Copula-EGARCH is used to join the marginal distributions from the GARCH type models into a joint 
distribution. The Copula-GARCH is comprised of multiple series that were modelled by a univariate GARCH model, and 
they were later joined together with a Copula. Copula – GARCH models have also been used in finance (Embrechts et 
al. 2001, Panchenko 2006, Serban et al. 2007, Huang et al. 2009 and Wang et al. 2009; 2011). Additionally, Lai et al. 
(2009) have used a Copula-GARCH model to compute an OHR. 

The EGARCH model is specified and the residuals are obtained. The residuals are then converted into a uniform 
distribution. The marginal distributions are then joined into a joint distribution using a Copula. There are multiple types of 
Copulas, each vary depending of the type of dependence they represent. The Student-t distribution Copula could be 
used rather than a Gaussian distribution Copula because a lack of normality was found for each series, and thus the 
normality assumption was not made. Also, the Guassian Copula has no dependence in the tails, while the Student-t 
Copula has dependence in the tails (Embrechts et al. 2001; Jondeau and Rockinger2006). 

The Student-t Copula allows for the joining of marginal distributions in extreme events, but not for asymmetries. The 
tail dependence in the Student-t copula is symmetric (Wang and Cai, 2011). The Clayton copula, which is an 
asymmetric copula, is a better choice to model marginal distributions with negative asymmetries (Vogiatzoglou 2010). 
Another type of asymmetric Copula is the Gumbel copula that is better suited for modeling asymmetries in the positive 
tail (Vogiatzoglou, 2010).The Clayton Copula and the Gumbel Copula belong to the Archimedean copula family.Other 
Archimedean copulas include: Frank, Joe and Ali-Mikhail-Haq(Shams and Haghighi, 2013).copulas allow for the 
modeling of dependence in high dimensions with only one parameter (Shams and Haghighi, 2013). In Chapter 5 only 
the Student-t Copula is used because it can perform better under extreme market conditions than the Gaussian Copula. 
Additionally, oil prices tend to fluctuate in both positive and negative directions. Since it is relatively unknown when oil  
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price would increase or decrease, the Student-t Copula is used for its asymmetric dependence. Table A6.01 highlights 
the equations for various Copulas. 

For the Gaussian Copula, " is the estimated parameter andΦ
�

 is the inverse of the Gaussian function. For the Student-
t Copula, " and v are estimated parameters and�$�is the inverse of the Student-t function. For the Clayton Copula, 0 < � < ∞ is the parameter that controls the dependence in the negative tail. For the Gumbel Copula, 0 < � ≤ 1 is the 
parameter that controls the dependence in the positive tail. 
 
Table A.01:Characteristic Equations for various Types of Copulas 

Type of 
Copula 

Equation 

Gaussian �8(c, �) = � � 12�(1 − "�)�/�Φ
ij($)

∞
Φ
ij(N)

∞ exp �−|� − 2"|� + ��2(1 − "�) � �|�� 

Student-t �8,$(c, �) = � � 12�(1 − "�)�/��Iij($)
∞

��ij(N)
∞ �1 + |� − 2"|� + ���(1 − "�) �($U�) �⁄ ���� 

Clayton ��(c, �) − (c� + �� 	1)� ��  

Gumbel ��(c, �) − exp	(−�(−logu)� + (−e���)� j¡) 
Source:Compiled from Vogiatzoglou(2010) 

 
Model 4: Kalman Filter 
 
The Kalman Filter is a mathematical algorithm that can be used to separate the noise (random variations) from the 
signal in data (Welch, and Bishop, 1995). It produces estimates of variables that tend to be reliable and accurate. A 
KalmanFilter is an optimal estimator in that it makes estimates based on uncertain data. It finds the best estimate from 
noisy data by filtering away the noise. It is also recursive;consequently, measurements are processed as they arrive to 
find the optimal value for the next state. Notably, it remembers information about the previous states. 
The two equations of Kalman Filter are as follows: ¢|t = £|t� + ¤ct + RtHt = 2|t + �t W         (A.20) 

The signal |t is a function of a linear combination of the signal in the previous period or state |t�, a control signalct, 
and a noise Rt�. The |t equation is the state prediction equation. The Ht equation is the sensor prediction equation. A, 
B, and H are coefficients that are estimated.  
If the noise is Gaussian distributed, the Kalman Filter minimizes the mean squared error of its estimates. If the noise is 
not normally distributed, the Kalman Filter is still the best linear estimator. In real life signals may not be purely Gaussian 
distributed; however, normality is frequently assumed for estimation purposes.  
The second part of equation (A6.20) tells us that the measured value Ht is a function of the signal, and the measurement 
noise.TheprocessnoiseRt� is statistically independent of the measurement noise �t. 
As the Kalman Filter is specified, it makes a time prediction about the states ahead, namely: |t = £|t� + ¤ct , and the error covariance ahead ¥t = £¥t�£� + �. 
When new information comes in it makes a measurement update as the predicted states ahead would not be 100% 
accurately forecasted. Thus the predicted state ahead would differ from the actual state ahead. The next step involves 

computing the Kalman Gain ¦t = �ui0§(0�ui0§U[) 
It updates the measured value estimates |̈t = |̈t + ¦t(Ht + 2|̈t) 
and the error covariance ¥t = (1 − ¦t2)¥t. The new output for ¥t will enter the equation ¥t = £¥t�£� + � as the ¥t� 
to create the forecast for the next state of ¥tU�.  
The Kalman Filter can be represented by: |̈t = |̈t + ¦(Ht − 2|̈t)         (A.21) 
 
where the estimate |̈twill be a linear combination of the forecasted estimate |̈t, and a multiple of  the difference 
between the actual measurement Ht and the predicted measurement 2|̈t:the multiplier is called the Kalman gain (K).  
If the predicted measurement is close to the actual measure, then(Ht − 2|̈t) will be close to 0 and multiplication by the 
Kilman gain (K) will be small or insignificant. If however, the actual measurement if far different from the predicted  
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measurement, the Kalman gain will tell us by how much to correct it. Thus (Ht −2|̈t) can be considered as a correction 
term. The difference (Ht −2|̈t) is also referred to as the measurementinnovation (Welch, and Bishop, 1995). 
Thus, the whole idea of the Kalman Filter is to incorporate information about our previous states, the actual 
measurement value/sensor and the predicted measurement to make an accurate prediction for the next state.  
To estimate the time varying hedge ratio with the Kalman Filter, the following system is specified: 
 
 ¢�� =	∝ +;<� + =�;� = ;�� + �� W         (A.22) 

The first equation in (A6.22) is the signal or observation equation while and the second equation is the state or transition 
equation. The state equation shows the time varying of the hedge ratio that follows an autoregressive process of order 
1. The residual terms =�and �� are assumed to be Independent and Identically Distributed (I.I.D).  
Equation (A6.22) may be specified as  ¢©� =	∝ +;4� + =�;� = £;�� + ª� W         (A.23) 

where©� is an N ×1 vector that is used to model spot prices, 4 is an N × k matrix that may include futures prices and any 
other explanatory variable, ;� is a k x 1 vector of the coefficients that were estimated. Likewise, =�~¬(0, �),  ª�~¬(0, ª),  and .(=� , ª�) = 0.	 
The next step involves the estimation of the parameters A, Q and P and makinginferenceabout the time varying 
coefficient β. Thus the following equations are specified: ;®�|��W = £;®��          (A.24) ¥�|��W = £¥�|��W£′ + �         (A.25) =� = (�� − ; ′̄�|�|��W)       (A.26) <� = |′�¥�|��W|� + �        (A.27) ;®� = ;®�|��W + ¥�|�|��W °T�T±         (A.28) 

¥� = ¥�|��W|�|′�¥�|��W ° ��T±         (A.29) 

where;®� was estimated via maximum likelihood estimation, ¥� is the variance of ;®�, =� denotes the one step ahead 
prediction error which has a variance of <�. The subscript �|� − 1W is the conditional estimation of parameters at time t, 
given information at the previous period t-1. 
 
 
 
 
 
 

APPENDIX 2 
 
Steps used to compute the OHR for WTI, gasoline and heating oil using Copula-EGARCH 
 
The following illustrates the steps for the computation for the OHR for WTI, gasoline and heating oil using Copula-
EGARCH 

²³´Z0[ = v ℎ�,�� ℎ��,�ℎ��,� ℎ�,�� w 			= °16.6533 00 16.662± ° 1 0.99980.9998 1 ± °16.6533 00 16.662± ℎ�,�� = 16.6533	|	16.6533				 = 277.332 ℎ�,�� = 16.662	|	16.662 = 277.622 ℎ��,� = 16.6533	|0.9998	|	16.662 = 277.421 ℎ��,� ℎ�,��¼ = 277.421 277.622� = 0.9993 

����e���Z0[ = 0.2836 ∗ 0.9884 ∗ 0.3862 0.3862 ∗ 0.3862� = 0.7261 ℎ��������eZ0[ = 0.4261 ∗ 0.9988 ∗ 0.3303 0.4261 ∗ 0.4261� = 0.7742 

 
 


