Volume 2 Issue 2,September 2014, Page 89 - 95 http://www.palgojournals.org/PJER/Index.htm Corresponding Authors Email:linusokafor@gmail.com

MODELLING BY INTER-REACTION EFFECTS

*Uchenwa Linus Okafor and Oladejo M O

Department of Mathematics, Nigerian Defence Academy Kaduna

Accepted 28 August, 2014

We present a model on inter reaction forces among the variables of a multiple regression model The Number Cruncher Statistical System(NCSS 9,trial version) digital package was used for model formulation and analysis. The $\frac{(K+1)(K+2)}{2}$ method developed here uses fewer independent variables than other methods in use. A practical case of the Nigerian Defence Academy (NDA) Kaduna , cadet's offences showed that results obtained from considering inter-reaction between the dependent variable and the independent variables is better than those from the conventional multiple regression model in terms of forecast accuracies.

Keywords: Inter- reaction effects, cadets, offences, Multiple Regression, dependent variables, model.

INTRODUCTION

In multiple regression analysis, interaction effects consider the product of one independent variable with other dependent variables. According to Pedhazur and Schmelkin (1991),the idea that multiple regression effects be incorporated into research is a great contribution by Sir Ronald Fisher. Walpole et al (2007) said that interactions are accounted for in regression models by product terms and that from it one can ascertain the combination of the factors that results in maximum effects or efficiency. Hargens(2007) distinguished between the regression surface produced by estimating a product-variable model of an interaction effect, and the casual mechanism that produced the regression surface. Kang and Waller(2005) in an item response theory(IRT) model showed that item response theory provides a viable means of explaining the interactions between variables in models. Aiken and West(1991),Cohen and Cohen(1983) showed how to interpret the interaction effects of two continuous predictor variables. Pedhazur(1997) illustrated how to test for significance of coefficients in an interaction model.

Assumptions of the Study

The study assumes the following according to Tembe (2008), Mark and David (1979) and Okafor (2008).

- a. It is assumed that the primary and secondary sources of data are accurate.
- b. It is assumed that the study is worth conducting for problem solving and decision making by the appropriate authorities and multiple regression analysis.
- c. It is assumed that statistical soft ware's and the hard ware's used in this study and research are the appropriate technology.
- d. It is assumed that this prototype as a case study is accurate and gives appropriate fit.
- e. The model is predicated on the assumption that those factors which have influenced the number of convicts in the past and present will continue to do so in more or less the same manner in the future.
- f. As in all forecasting tools, the model may not be the correct forecast all the time.

CASE DESCRIPTION

Maintenance of discipline is the trade mark of the military profession. The importance of discipline to the Armed Forces

90.Palgo J.Edu.Res.

is well captured in the words of George Washington, a one time President of United States of America. "Nothing can be more hurtful to the service than the neglect of discipline; for that discipline, more than numbers, gives one army the superiority over another"

At the Nigerian Defence Academy, once cadets take oath of allegiance on admission into the NDA, they become liable to military as well as civil laws of Nigeria. As a military personnel, each cadet is bound to keep to the oat to the letter.

Uba (2008) while speaking after cadets oath taking ceremony said:"As officer cadets they are bound to honour all the pledges they have sworn (to as) the Academy does not expect any breach or attempt to break their promise now or in the future as such as action will incur legal consequences".

Cadets at NDA are not only here for academic pursuits but also to get prepared to provide useful services to the nation.

Dzarma (2007) said :"As for you cadets, it is not sufficient that you should acquire only technical skills but you are expected to show qualities of leadership and integrity and above all loyalty and patriotism. By doing this, you are providing an umbrella under whose shadows and protection every citizen of this country will thus be enabled to pursue his or her own chosen occupation and thus be enabled to give the fullest expression of his creative ability".

There are laid down rules and regulations in NDA and anyone found contravening any of these rules will be charged and tried. Those found guilty or convicted of any charge can be reprimanded, relegated, withdrawn, made to pay fine or confined to the guardroom or the Battalion line. Indiscipline in the armed forces has severe consequences or punishment. It is the enforcement of discipline that makes the military organisation a unique one. Cadets at NDA are expected to stick to discipline either in the classroom/Academic Branch, the battalion has a separate book for recording of charges against anyone that contravenes any breach of the established laws of either the country or the school authorities or even civil offences outside the Academy. The offences which cadets can be charged for and convicted are stated in APPENDIX 1. The offences which cadets can be charged for and convicted are stated in APPENDIX 1....

There are situations where we may need to take decision involving many issues of life in relation to one other issue. For instance, how to spend our monthly salary (Y), depends on other factors such as feeding money to the family, children school fees and pocket money, car maintenance, house rent etc. Here, our variable of interest depends on other variables. In a situation such as this, we will like to formulate a model that will help us construct the relationship between our variable of interest spending of salary (Y) and other variables feeding money, children school fees and pocket money (Xs) etc. The (Y) variable is called the dependent variable and the Xs variables are called the independent variables.

To establish the relationship between Y and the X variables in order to formulate the correct model, we use a technique called multiple regression. Therefore, when several independent variables are included in the regression equation the model we obtain is called the multiple regression models

Black(2005) proposed getting the number of coefficients from 2^k -1 formula and Walpole et al(2007) favoured the use of 2^k factorial for interaction model

In considering interaction effects using existing n methods, the multiple regression equation is

 $\dot{Y}_{t} = b_{0} + b_{1}x_{1j} + b_{2}x_{2j} + b_{3}x_{3} + \dots + b_{p}x_{pj} + b_{p+1}x_{1j}x_{2j} + b_{13}x_{3j} + b_{123p}x_{1}x_{2}x_{3}x_{p} + b_{k}x_{1}^{2} + b_{2}x_{2}^{2} + \dots + b_{p}x_{p}^{2} + b_{jp}x_{p} \\ \dot{Y}_{t} = b_{0} + b_{1}x_{1j} + b_{2}x_{2j} + b_{3}x_{3} + \dots + b_{p}x_{pj} + b_{p+1}x_{1j}x_{2j} + b_{13}x_{3j} + b_{123p}x_{1}x_{2}x_{3}x_{p} + b_{k}x_{1}^{2} + b_{2}x_{2}^{2} + \dots + b_{p}x_{p}^{2} + b_{jp}x_{p} \\ In our case of 9 independent variables, using the \frac{(K+1)(K+2)}{2} method:$ (2)

(4

.The model equation will be

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_1^2 + \beta_{11} X_2^2 + \beta_{12} X_3^2 + \beta_{13} X_4^2 + \beta_{14} X_5^2 + \beta_{15} X_9 X_{1+} + \beta_{12} X_$ $\beta_{16}X_9X_2 + + \beta_{17}X_9X_3 + \beta_{18}X_9X_4 + + \beta_{19}X_9X_5 + \beta_{20}X_9X_6 + \beta_{21}X_9X_7 + \beta_{22}X_9X_8 + \beta_{23}X_8X_1 + \beta_{24}X_8X_2 + \beta_{25}X_8X_3 + \beta_{26}X_8X_4 + \beta_{27}X_8X_5 + \beta_{27}X_8X_5 + \beta_{27}X_8X_7 +$ $\beta_{28}X_8X_6 + \beta_{29}X_8X_7 + \beta_{30}X_7X_1 + \beta_{31}X_7X_2 + \beta_{32}X_7X_4 + \beta_{33}X_7X_5 + \beta_{34}X_7X_6 + \beta_{35}X_6X_1 + \beta_{36}X_6X_2 + \beta_{37}X_6X_3 + \beta_{38}X_6X_4 + \beta_{39}X_6X_4 + \beta_{40}X_6X_5 + \beta_{41}X_5X_1 + \beta_{42}X_5X_2 + \beta_{43}X_5X_3 + \beta_{44}X_5X_4 + \beta_{45}X_4X_1 + \beta_{46}X_4X_2 + \beta_{47}X_4X_3 + \beta_{48}X_3X_1 + \beta_{49}X_3X_2 + \beta_{50}X_2X_1 + \beta_{51}X_6^2 + \beta_{51}X_6X_3 + \beta_{51}X_6X_4 + \beta_{5$ $\beta_{52}X_7^2 + \beta_{53}X_8^2 + \beta_{54}X_9^2 + e_t$ (4)

In equation (4), there are 9- effect or k dependent variables, 36 or $\frac{K(K-1)}{2}$ two factor interaction variables, 9 second order compliments of terms of all the 9 variables and a constant term. For k=9, we have $\left(\frac{(K+1)(K+2)}{2} = \frac{(9+1)(9+2)}{2}\right)$, or

or $\frac{(11*10)}{2}$ =55 coefficients, which is made up of 54 independent variables and a constant term.

The estimated model from the NCSS 9 prints out is shown in equation (5) below:

ESTIMATED EQUATION

Ý₁ =

757.852 - 12.006 X₈+ 19.347 X₉ - 31.406 X₁- 17.794 X₂+ 58.027 X₃- 40.0195 X₄+ 10.166 X₅+ 78.26856 X₆+ 16.836 X₇- $0.121 X_{8}^{2} - 4.264 X_{8}X_{9} + 2.134 X_{8}X_{1} - 0.434 X_{8}X_{2} - 3.649 X_{8}X_{3} + 0.520X_{8}X_{4} + 0.834 X_{8}X_{5} + 1.198 X_{8}X_{6} + 0.718 X_{8}X_{7} + 4.678 X_{8}X_{8} + 0.520X_{8}X_{8} + 0.$ X_{9}^{2} + 1.206 X₉X₁- 2.90* X₉X₂-1.744 X₉X₃+ 0.926 X₉X₄+ 0.786 X₉X₅- 0.768 X₉X₆+ 3.21 X₉X₇- 0.058 X₁² + 0.446 X₁X₂+ 2.238 $\begin{array}{l} X_{1}X_{3}-1.205 X_{3}X_{4}-0.428 X_{1}X_{5}+0.061 X_{1}X_{6}-1.526 X_{3}X_{4}+0.706 X_{3}Y_{5}-0.706 X_{3}Y_{6}+3.21 X_{3}Y_{7}-0.055 X_{1}X_{1}+0.446 X_{1}X_{2}+2.256 X_{1}X_{3}-1.345 X_{1}X_{4}+0.428 X_{1}X_{5}+0.061 X_{1}X_{6}-1.526 X_{1}X_{7}+0.047 X_{2}^{2}+0.283 X_{2}X_{3}+0.123 X_{2}X_{4}+0.475 X_{2}X_{5}+0.265 X_{2}X_{6}+0.456 X_{2}X_{7}-0.381 X_{3}^{2}+0.953 X_{3}X_{4}-0.544 X_{3}X_{5}+4.311 X_{3}X_{6}-0.513 X_{3}X_{7}+0.286 X_{4}^{2}-0.273 X_{4}X_{5}-0.706 X_{4}X_{6}+0.978 X_{4}X_{7}-0.169 X_{5}^{2}+0.158 X_{5}X_{6}-1.56 X_{5}X_{7}-1.342 X_{6}^{2}+1.021 X_{6}X_{7}-0.898 X_{7}^{2} \end{array}$

The Run Summary Report is shown in Table 1.

Table1 -Runs Summary

Item	Value
Dependent variable	Y
Number of Independent variable	54
R ²	0.987074
Adjusted R ²	0.9289033
Coefficient of Variation	0.1440463
Mean Square Error	599.5295
Square Root of MSE	24.48529
Ave.Pct .Error	1.713956
Completion Status	Normal Completion

Using the multiple regression method the model equation is

 $Y_t = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \alpha_5 x_5 + \alpha_6 x_6 + \alpha_7 x_7 + \alpha_8 x_8 + \alpha_9 x_9 + e_t$ (6) And the estimate model is as shown in equation(7) and the run summary in shown in Table2. $\dot{Y}_t = (1 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \alpha_5 x_5 + \alpha_6 x_6 + \alpha_7 x_7 + \alpha_8 x_8 + \alpha_9 x_9 + e_t$ (6)

 $159.129 - 1.205 x_8 + 1.194 X_9 + 1.324 X_1 + 0.756 x 2 + 0.589 x_3 - 1.972 x_4 + 0.488 x_5 + 0.216 x_6 + 0.718 x_7 \ (7)$

Table 2.Run Summary Report

Value
Y
9
None
0.1753071
0.01395408
0.4705266
5684.178
75.39349
44.21139
Normal Completion

DISCUSSION AND EVALUTION

Table 2 in Appendix A represents the annotated computer printout for regression analysis for fitted interaction model. The computer system used is the Number Cruncher Statistical System (NCSS 9,trial version) by Jerry Hintz 2007) (NCSS 9, trial version). The table in Appendix 2 shows the parameter estimates, regression coefficients, Standard Errors,, Standardized coefficients,.T-statistics,probability level and the power of T- test at 5% level of significance. The parameter estimates represent coefficients in the model and almost all the coefficients are significant.

CONCLUSION

In this paper, we analyzed the relationship between the various offences committed by Cadets and the number of Cadets charged and proposed a model that adequately represented the relationship. We employed the factor interactions model for the analysis. Interactions represent the combined effects of variables on the criterion or dependent measure...Under an interaction effect, the impact of on variable depends on the level of the other variables By including interaction the coefficient for that variable shows the effect of that variable when the other variables involved in

92.Palgo J.Edu.Res.

the interaction is zero.(Alan Taylor(2007).

We applied the interaction model to our data set. We concluded that the interaction model explains the relationship be the offences committed and cadets charged better than the model without the interaction effects. The parameters were estimated for the data set and were later used for prediction purposes. We used various tests to check for the normality assumption of the errors and results show that the errors are normally and independently distributed, showing that normality assumptions are met

The findings from the model with interaction effects show that it eliminates the problem of multicollinearity. Another feature of the interaction model is that the combined effect of one variable with another independent variable is clearly manifested.

Definition of Key Variables

a.	X ₁	=	Insubordination
b.	X2	=	Absence from Duty
c.	X ₃	=	Malingering and Drunkenness
d.	X_4	=	Offences in Relation to Property
e.	X_5	=	Offences in Relation to and by Person in Custody
f.	X_6	=	Miscellaneous Offences
g.	X ₇	=	Conduct to Prejudice Service Discipline
ĥ.	X8	=	Civil Offence
i.	X ₉	=	Sexual Offences

REFERENCES

Aiken LS, West S(1991)Multiple Regression, Testing and Interpreting Interactions. Newbury Park; Saga.

Black K (2005) Contemporary Decision Making. West Publishing Company.

Cohen, J, Cohen P(1983). Applied Multiple Regression/Correlation Analysis for Behavioural Sciences. 2nd Edition. HillSale, NJ, Erbaun. Decomposition." Unpublished M.Sc Thesis. Post Graduate School, Nigerian Defence Academy, Diego, Academic Press Dzarma M(2007)"Be A Disciplined Officer" Valiant Quarterly Magazine Nigerian Defence

Hargens L(2007) "Interpreting Product-Variable Models of Interactions Effects" Working Paper No. 67.Center for Statistics and the Social Sciences, University of Washington.Nov 8,2006.

Jerry H(2007) "Multiple Linear Regression" Number Cruncher Statistical Software(NCSS),(Help section) Kaduna,Nigeria.

Kang S ,Waller NG(2005) "Moderated Multiple Regression,Spurious Interaction Effects and IRT".Applied Psychology Measurement, Vol.29 No.2 87-105

managerial Decision.New Age International Publishers.

Mark LB, David ML(1979) Basic Business Statistics Concept and Application. Printice-Hall Inc, Engelwood Cliffs.

Okafor L(2008)" Modelling The Nigerian Defence Academy Cadet's Sick Parade Using Time Series

Pedhazur E.J and Schmelrin, L.P(1991) Measurement Design and Analysis: An Integrated Approach. Hillside, NJ; Erbaum.

Pedhazur,EJ(1997) Multiple Regression in Behavioural Research(3rd Ed).Forth WorthTX:Harcourt Brau.

Research(OR), University of <u>Dubug.etembe@obg.edu</u>.

Srivastava UK, GV Shenoy, SC Sharama(2008) Quantitative Decision Technique for

Taylor A(2007) "Testing and Interpreting Interactions in Regression-In a nutshell".www.down load,21 Nov 2013.

Temb E(2005) Artifical Intelligence(AI) Using Natural Languages(NPL) with Opereations

Uba Sz."Short Service Course 37 Takes Oath" Nigerian Defence Academy Newsletter.Jul-Sep 2008,p7.

WaLpole, R.E, Myers, R.H, Myers, L.S and Ye, K(2012), Probability and Statistics For Engineers and Scientists. Ninth Edition. PEARSON.

APPENDIX 1. LIST OF OFFENCES AND CADETS CHARGED.

Period(t	Y _t	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9
1	200	30	20	8	10	20	10	10	10	10
2	215	18	20	10	6	18	8	0	20	20
3	185	10	40	6	8	20	20	0	10	10
4	300	19	32	9	0	22	22	16	15	0
5	268	22	40	2	9	32	23	18	16	3
6	99	23	60	10	20	40	24	0	18	14

7	85	29	70	18	2	28	28	20	20	20
8	100	10	40	20	8	29	29	0	22	22
9	93	10	50	21	19	40	30	20	18	10
10	70	20	39	8	14	22	42	0	20	10
11	270	4	60	9	0	24	50	2	23	15
12	250	5	29	11	8	40	29	0	41	20
13	186	40	18	9	0	18	40	11	24	20
14	67	10	20	10	3	20	20	0	20	30
15	58	6	5	8	0	22	0	0	18	41
16	89	11	20	20	4	24	3	0	17	20
17	70	18	10	4	0	33	4	0	20	33
18	100	10	18	5	0	41	6	0	29	0
19	72	20	40	20	0	42	0	41	32	40
20	66	4	28	22	9	29	10	0	24	20
21	200	9	32	20	20	40	23	20	28	0
22	205	40	40	9	18	30	21	22	38	22
23	290	18	60	12	14	25	40	0	24	23
24	225	20	43	14	16	40	0	0	29	10
25	285	7	30	20	2	20	6	16	32	20
26	162	20	29	11	9	21	7	0	10	20
27	174	10	16	14	20	22	18	18	6	22
28	120	20	18	22	18	25	18	19	19	23
29	90	15	30	9	12	32	19	0	9	24
30	86	16	8	9	14	40	24	0	10	28
31	90	20	20	22	18	44	29	9	11	29
32	182	20	16	28	20	32	10	10	2	14
33	133	30	18	20	10	40	1	0	4	20
34	148	50	30	13	12	32	0	20	3	22
35	277	52	40	18	14	32	3	10	5	28
36	320	40	70	19	0	40	41	0	20	29
37	185	20	2	22	3	21	9	20	4	10
38	120	6	19	12	4	23	0	16	3	22
39	91	9	20	15	11	22	1	19	4	20
40	280	29	34	24	17	28	10	20	8	23
41	75	32	32	9	18	33	11	14	9	24
42	82	19	35	10	1	48	13	5	20	28
43	96	28	10	20	0	44	19	6	20	29
44	200	40	10	28	3	20	20	10	25	40
45	128	30	18	23	4	26	0	20	28	30
46	230	20	10	15	3	2	4	30	18	0
47	200	55	16	20	8	40	5	0	10	24
48	270	40	9	20	0	43	0	10	40	29
49	250	18	20	20	20	9	20	8	0	20
50	280	19	32	20	4	24	22	20	4	42

94.Palgo J.Edu.Res.

	00
52 140 30 18 32 20 27 0 14 20	20
53 130 28 6 29 22 29 9 15 0	22
54 99 20 9 18 4 40 10 0 4	23
55 98 22 10 22 30 45 14 7 20	14
56 69 49 20 29 0 29 18 122 22	15

APPENDIX 2. Regression Coefficients T-Tests

Independent	Regression Coefficient	Standard Error	Standard- ized	T-Statistic to Test	Prob	Reject H0 at	Power of Test
Variable	b(i)	Sb(i)	Coefficient	H0: β(i)=0	Level	5%?	at 5%
Intercept	757.8516	658.0529	0	1.151658	0.4552025	No	0.07976279
X ₈	-12.00603	10.97918	-1.302648	-1.093527	0.4715783	No	0.07709175
X ₉	19.3471	27.02899	1.143913	0.7157906	0.604503	No	0.06223184
X ₁	-31.40565	11.95389	-4.34078	-2.627234	0.2315361	No	0.1634794
X ₂	-17.79439	9.82459	-3.173557	-1.81121	0.3211538	No	0.1147453
X_3	58.02723	40.08559	4.471426	1.447584	0.3848552	No	0.09456588
X ₄	-40.0195	22,52031	-3.687622	-1.77704	0.3263101	No	0.1127834
X5	10.1655	5.729124	1.403913	1.774356	0.3267217	No	0.1126297
X ₆	78.26857	14.81389	8.341578	5.283459	0.1190843	No	0.321518
X ₇	16.83606	21.24386	1.879474	0.7925143	0.5733631	No	0.064858
X _o *X _o	-0.1212051	0.09725733	-0.5546705	-1.246231	0.4304914	No	0.08428863
$X_8 X_9$	-4,264334	0.987256	-5.750127	-4.31938	0.1448351	No	0.2653111
X ₀ *X ₁	2 133954	0 6085341	8 974289	3 506712	0 1768491	No	0 2167935
X ₀ X ₂	-0 4339265	0 1986796	-1 997677	-2 184052	0 2733485	No	0 1367001
$X_0 X_2$	-3 648748	0.8844267	-9 200487	-4 125552	0 1513915	No	0 2538256
X ₀ *X4	0 5202839	0.338576	2 097353	1.536683	0.3672684	No	0.09934656
X ₀ *X ₅	0.8239459	0 2041264	2 713756	4 085438	0 1528219	No	0 2514414
X ₀ *X ₀	1 107822	0.5342312	3 609121	2 242142	0.2670774	No	0.2014414
X ₈ X ₆ X ₆ *X ₇	0 717807/	0.3042012	2 308/00	2.242142	0.2070774	No	0.1401041
X ₈ X ₇ X ₈ X ₇	1 678154	2 157518	1 208558	2 168304	0.2020003	No	0.1357577
X ₃ *X ₄	1 206033	0 / 330073	2 113/73	2.700004	0.2108638	No	0.1007077
	-2 902351	0.4659001	-8 0/1658	-6 220556	0.2130030	No	0.1727010
Xg X2 Xg*Xg	-1 7//235	0.5207186	-1 96/713	-3 202758	0.101020	No	0.07 + 332 1
X ₉ X ₃	0 0250178	0.6223/18/	1 886033	1 /6/253	0.381/535	No	0.2000772
Ng N4 V-*V-	0.3253170	0.0020404	1.0000000	1 220675	0.3014333	No	0.03045003
A9 A5	0.7650955	0.0900929	0.6344161	0.7765294	0.4105054	No	0.00040004
Ng N6 V-*V-	2 211080	1 1 1 2 0 0 1 0 1	4 00027	2 912590	0.0790007	No	0.00423317
A9 A7 X.*X.	-0.05827167	0 1//3685	-0 1530302	-0.4036314	0.2174720	No	0.1747447
Λ1 Λ1 Υ.*Υ-	-0.03027107	0.1443003	2 62052	1 502262	0.7557717	No	0.03400137
$\Lambda_1 \Lambda_2$	2 227019	0.279771	2.00900	5 21/221	0.3308039	No	0.1024499
Λ1 Λ3 Υ.*Υ.	2.237910	0.421100	6 70706	2 220/22	0.1104073	No	0.3232933
Λ1 Λ4 V *V	0 /079112	0.4734170	-0.79790	2 250277	0.2102710	No	0.1757719
∧1 ∧5 V.*V.	0.4270113	0.1273295	0.1061001	0.2512542	0.104102	No	0.2079343
∧1 ∧6 ∨ *∨	1 526215	0.1737000	5 745962	4 222602	0.704900	No	0.00004024
∧1 ∧7 ∨ *∨	-1.020310	0.3003172	-0.740002	-4.20002	0.1470039	No	0.20024
$\wedge_2 \wedge_2$ V *V	0.04071709	0.2302031	0.0911990	0.1900753	0.0707303	INO No	0.0009041
$\Lambda_2 \Lambda_3$	0.2031302	0.2043720	0.0010010	1.30349	0.3960034	INO No	0.09131293
$\wedge_2 \wedge_4$	0.1229133	0.1720227	0.7909052	0.7124407	0.000912	INO No	0.0021223
∧ ₂ ∧ ₅ ∨ ∗∨	0.474029	0.3021001	3.030073	1.570755	0.3009147	INO No	0.1012007
$\Lambda_2 \Lambda_6$	0.200317	0.207 1000	1.019001	0.9930013	0.30221	INO No	0.07209040
$\wedge_2 \wedge_7$	0.4007701	0.3231430	2.210030	1.410441	0.3920203	INO	0.0920110
∧3 ∧3 ∨ *∨	-0.3809835	0.3/0344/	-0.9941844	-1.011/88	0.4902098	INO N I-	0.07349211
∧3 ∧4 ∨ *∨	0.9525595	0.5225749	2.704041	1.822819	0.3194357	INO N I-	0.1154143
∧3 ∧5 ∨ *∨	-0.044400	0.4138024	-1.211119	-1.315548	0.413//00	INO N I-	0.007/35217
∧3 ∧6 ∨ *∨	-4.3111/8	0.914/4/2	-9.4003/1	-4./129/2	0.1331042	INO N-	0.2004003
A3 A7	-0.5120145	0.3123943	-1.1/9040	-1.3/033/	0.3999039	INO	0.09004908

Okafor and Oladejo 95.

$X_4 X_4$	0.2856572	0.3663198	1.685024	0.7798029	0.5783644	No	0.06440783
$X_4 X_5$	-0.2733197	0.1219258	-1.195197	-2.241688	0.2671254	No	0.1401569
$X_4 X_6$	-0.7056226	0.6408073	-2.476379	-1.101146	0.4693776	No	0.07743677
$X_4 X_7$	0.977725	0.3534533	4.234068	2.766207	0.2208358	No	0.1719252
$X_5 X_5$	-0.1687766	0.1685532	-0.9795105	-1.001325	0.4995784	No	0.07304526
$X_4 X_6$	0.1579895	0.2377519	0.3108284	0.6645139	0.6266156	No	0.06060191
$X_4 X_7$	-1.559868	0.3384412	-5.404259	-4.608979	0.1360178	No	0.2823613
$X_6 X_6$	-1.341818	0.3927729	-4.125247	-3.41627	0.1812849	No	0.2113397
X ₆ *X ₇	1.020513	0.3667063	2.771856	2.782915	0.2196129	No	0.1729409
X ₇ *X ₇	-0.8982974	0.3485434	-3.871997	-2.57729	0.2356275	No	0.1604464