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In longitudinal studies, observations measured repeatedly from the same
objective of statistical analysis is to describe the 
covariates while accounting for the correlation among the repeated observations for a given subject. Generalized 
Estimating Equation (GEE) is a general statistical approach to fit a marginal
analysis, and it has been popularly applied into clinical trials and biomedical studies. Generalized linear Model (GLM)on 
the other hand has been widely used in fitting a regression to a set of data of dependent varia
a/some set of covariates with the different set of distributions and their link function and its use has been extended to 
longitudinal data.This paper examines the effects of some factors; age, sex, Body Mass Index (BMI), blood pre
exercise and glucose tolerance on the health status of 840 diabetes patients attending clinic over a period of five years 
using the generalized linear model and the generalized estimating equations methods. The GEE performs better than 
the GLM. The result reveals that glucose tolerance, blood pressure and BMI are the important factors that affect the 
state of health of these patients. 
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1.0 INTRODUCTION 
 
Observations measured repeatedly from the same subject over time are serially correlated in longitudinal studies. When 
observations are measured on a continuous scale, the dependency structure between observations can be 
a covariance matrix with non-constant variances and non
matrices to model such dependency between observations from the same subject. The method of generalized 
estimating equations (GEE) is often used to analyze longitudinal and other correlated response data, particularly if 
responses are binary. The generalized estimating equations (GEE) method, an extension of the quasi
approach by Wedderburn, is being increasingly used to analyze l
they are binary or in the form of counts [Burton, P.

In statistics, GEE is used to estimate
unknown correlation between outcomes.
the covariance structure is misspecified under mild regularity conditions. The focus of the GEE is on estimating the 
average response over the population ("population
enable prediction of the effect of changing one or more co
J.,et al (1994) The GEEs are usually used in conjunction with
"robust standard error" or "sandwich variance" estimates. In the c
variance structure, these are known as "heteroscedasticity consistent standard error" estimators. Indeed, the GEE 
unified several independent formulations of these standard error esti
(2014) Dolcini, M.M. and Adler, N.E. (1994).,

Generalized Estimating Equationx(GEEs) belong to a class of
rely on specification of only the first two moments. They are a popular alternative to the
linear mixed model which is more sensitive to variance structure specification. They are commonly used in 
large epidemiological studies, especially multi
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In longitudinal studies, observations measured repeatedly from the same subject over time are serially correlated. One 
objective of statistical analysis is to describe the marginal expectation of the outcome variable as a function of the 
covariates while accounting for the correlation among the repeated observations for a given subject. Generalized 
Estimating Equation (GEE) is a general statistical approach to fit a marginal model for 
analysis, and it has been popularly applied into clinical trials and biomedical studies. Generalized linear Model (GLM)on 
the other hand has been widely used in fitting a regression to a set of data of dependent varia
a/some set of covariates with the different set of distributions and their link function and its use has been extended to 
longitudinal data.This paper examines the effects of some factors; age, sex, Body Mass Index (BMI), blood pre
exercise and glucose tolerance on the health status of 840 diabetes patients attending clinic over a period of five years 
using the generalized linear model and the generalized estimating equations methods. The GEE performs better than 

result reveals that glucose tolerance, blood pressure and BMI are the important factors that affect the 

Generalized Estimating Equation, Longitudinal data; Serial correlation; Covariates; Diabetes patients

Observations measured repeatedly from the same subject over time are serially correlated in longitudinal studies. When 
observations are measured on a continuous scale, the dependency structure between observations can be 

constant variances and non-zero covariances. There are different types of covariance 
matrices to model such dependency between observations from the same subject. The method of generalized 

n used to analyze longitudinal and other correlated response data, particularly if 
responses are binary. The generalized estimating equations (GEE) method, an extension of the quasi
approach by Wedderburn, is being increasingly used to analyze longitudinal and other correlated data, especially when 

Burton, P., Gurrin, L. and Sly, P. (1998), Chan, Jennifer S.K. (2014)
estimate the parameters of a generalized linear model

between outcomes. Parameter estimates from the GEE are
structure is misspecified under mild regularity conditions. The focus of the GEE is on estimating the 

esponse over the population ("population-averaged" effects) rather than the regression
enable prediction of the effect of changing one or more covariates on a given individual [Wang, Ming (2014

The GEEs are usually used in conjunction with Huber–White standard error
"robust standard error" or "sandwich variance" estimates. In the case of a linear model with a working independence 
variance structure, these are known as "heteroscedasticity consistent standard error" estimators. Indeed, the GEE 
unified several independent formulations of these standard error estimators in a general framework [
2014) Dolcini, M.M. and Adler, N.E. (1994)., 

(GEEs) belong to a class of semi parametric regression 
rely on specification of only the first two moments. They are a popular alternative to the likelihood

which is more sensitive to variance structure specification. They are commonly used in 
studies, especially multi-site cohort studies because they can handle many types 
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subject over time are serially correlated. One 
marginal expectation of the outcome variable as a function of the 

covariates while accounting for the correlation among the repeated observations for a given subject. Generalized 
 longitudinal/clustered data 

analysis, and it has been popularly applied into clinical trials and biomedical studies. Generalized linear Model (GLM)on 
the other hand has been widely used in fitting a regression to a set of data of dependent variables depending solely on 
a/some set of covariates with the different set of distributions and their link function and its use has been extended to 
longitudinal data.This paper examines the effects of some factors; age, sex, Body Mass Index (BMI), blood pressure, 
exercise and glucose tolerance on the health status of 840 diabetes patients attending clinic over a period of five years 
using the generalized linear model and the generalized estimating equations methods. The GEE performs better than 

result reveals that glucose tolerance, blood pressure and BMI are the important factors that affect the 

Generalized Estimating Equation, Longitudinal data; Serial correlation; Covariates; Diabetes patients 

Observations measured repeatedly from the same subject over time are serially correlated in longitudinal studies. When 
observations are measured on a continuous scale, the dependency structure between observations can be modelled in 

zero covariances. There are different types of covariance 
matrices to model such dependency between observations from the same subject. The method of generalized 

n used to analyze longitudinal and other correlated response data, particularly if 
responses are binary. The generalized estimating equations (GEE) method, an extension of the quasi-likelihood 

ongitudinal and other correlated data, especially when 
Chan, Jennifer S.K. (2014)]. 

generalized linear model with a possible 
Parameter estimates from the GEE are consistent even when 

structure is misspecified under mild regularity conditions. The focus of the GEE is on estimating the 
regression parameters that would 

Wang, Ming (2014, ]. Diggle, P. 
White standard error estimates also known as 

ase of a linear model with a working independence 
variance structure, these are known as "heteroscedasticity consistent standard error" estimators. Indeed, the GEE 

mework [ Chan, Jennifer S.K. 

regression techniques because they 
likelihood–based generalized 

which is more sensitive to variance structure specification. They are commonly used in 
because they can handle many types  of  unmeasured  



34.Palgo J.Med.Medical Sci. 
 

dependence between outcomes. Some examples of these studies include cross-over trials, cluster data and longitudinal 
data. The mixed logistic model is usually used to model the heterogeneity between the subjects and the correlation 
among the repeated observations [,Wang, Ming (2014), Hardin, J.W and Hilbe, J.M. (2003) , and Liang, K. Y. and Zeger, 
S. L. (1993)]. It is well known that using maximum likelihood to estimate the expected parameters and variance 
components is computational difficult. This approach does not require the complete specification of the joint distribution 
of the repeated responses but rather only thetwo moments [Thompson, A. M., Humbert, M. L. et al (2003]. The major 
advantages of GEE are: it provides a consistent estimate for the regression parameter even when the correlation matrix 
is mis-specified, it indicates that the efficiency loss relative to the maximum likelihood is small, it extends this approach 
for correlated binary data by specifying supplementary generalized estimating equations, it is based on the empirical pair 
wise covariances that permit estimation of the correlated parameters, it is used to estimate the regression parameters 
through the use of log it approximations by the probit function while the variance components are estimated empirically 
[Chan, Jennifer S.K. (2014), Shock. N. W. et al  (1984) and Hay, J. L. and Pettit, A. N. (2001). ].  

Generalized Estimating Equations(GEEs) include an additional variance component to accommodate correlated data, 
and to allow for differences among clusters. GEEs have several favourable properties for ecological analyses; for 
example, parameter estimates and empirical standard errors are robust to misspecification of the correlation structure 
[Overall, J. E. and Tonidandel, S. (2004)]. GEEs have been used extensively in a variety of disciplines, such as 
epidemiology [Wu, Y. B. et al(1999)] and political science [Zorn, C. J. W. (2001).]. In ecology, they have been used to 
control for lack of independence among nests clustered within sites [Driscoll, M. J. L.,et al  (2005).] and among related 
species [Duncan, R. P. (2004)]. 

Over the past two decades, GEE approach has been developed and advanced. For example, Zhao and Prentice 
[Zhao, L.P., Prentice, R.L. (1990)] and Lipsitz et al. and Lipsitz, S. R. and Fitzmaurice, G. M. (1994).] apply the GEE 
approach to analyze binary data, Kenward et al.  consider ordinal data, Lipsitz et al.  use categorical data, Prentice and 
Zhao  focus on multivariate data, Park, T. (1993) compares GEE approach to maximum likelihood approach and Miller 
et al.  to weighted least squares approach, etc. [Chan, Jennifer S.K. (2014).].  

The aim of this research is to study the effects of age, sex, Body Mass Index (BMI), blood pressure, exercise and 
glucose tolerance on 840 diabetes patients who attended clinic for a period of five yearsusing the generalized estimating 
equation method. Since there is often some confusion between generalized estimation equation (GEE) and the 
generalized linear model (GLM), the results of both estimators are compared. 

The rest of the paper is organised as follows: section 2 discusses the materials and methods used in this study, 
analysis and discussion of the results are presented in section 3 while conclusion is discussed in section 4. 
 
 
2.0 MATERIALS AND METHODS 
 
2.1.Generalized Estimating Equations 
 
Generalized Estimating Equations (GEEs) are methods of parameter estimation for correlated data. They handle 
problems of longitudinal data analysis by assessing how the mean dependent on variable changes over time, while 
separately dealing with the nuisance covariance among the observations within subjects in order to get a better estimate 
and valid significance tests. When data are collected on the same units across successive points in time, these repeated 
observations are correlated over time. If this correlation is not taken into account, then the standard errors of the 
parameter estimates will not be valid and statistical inference made with such estimates will be inefficient [Fitzmaurice, 
G., et al (2004)].  

Three components are important in the GEE; generalized estimating equations require a model for the mean response 
(as a function of covariates), the variance (often specified as a function of the mean), and a working correlation 
assumption. They are semi-parametric because estimates rely on parametric assumptions regarding the mean and 
variance/covariance, but they are not fully parametric (i.e. they require no other distributional assumptions). Most 
problems arise from the model construction, the standard regression model comprises of dependent variable, 
independent variable(s) and the disturbance term [Fitzmaurice, G., et al (2004]. Unlike the marginal model, the 
disturbance term is not included; the model depends on the first and the second moments which is why it is being 
referred to as semi-parametric model. However, this does not indicate the negligence of the disturbance term; it has 
been accounted for in the score equation that is used to estimate the parameters of interest [Koper, Nicola and 
Manseau, Micheline (2009)].  
Liang and Zeger introduced the generalized estimating equations (GEE), which extend the use of generalized linear 
models (GLM) to longitudinal data. Generalized estimating equations are used in regression analysis of longitudinal 
data, where observations on the same subject are correlated [6]. 

 
A linear function of regressors is given by, 

ikkiii XXX βββαψ ++++= ...2211
                           . . . (1) 
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The regressors ijX are pre-specified functions of the explanatory variables, iψ  is the linear predictor  and s'β  are the 

coefficients.   
A smooth and invertible linearizing link function g(.) which transforms the expectation of the response variable 

)( ii YE=µ           . . . (2) 

to the linear predictor                     

ikkiiii XXXg βββαψµ ++++== ...)( 2211                  . . . (3) 

)...()( 2211

11

ikkiiii XXXgg βββαψµ ++++== −−

                 
. . .(4) 

The inverse link (.)1−g  is also called the mean function where iµ  is the expected value of the response. 

In most research papers, GEE are often regarded as extension of GLM which accounts for correlation [Zeger, S. L. and 
Liang, K. Y. (1986) and Wedderburn, R. W. (1974)] This requires providing some information used in fitting the desired 
regression model.  
 
Stated below are the required information needed to fit a GEE regression model: 
     

• The distribution of the explained variable. 

• The form of relationship that exists between the explained and the explanatory variable (i.e. link function). 

• The explained variable. 

• The mean-model (if interested in population effect). 

• The mean-variance model. 

• The correlation model. 

• The correlation structure of the repeated measurements. 
 
The following sections illustrate the various forms of mean model, mean-variance model and correlation model that 
exist. 
 
2.2 The GEE Mean Model 
 
The mean model also known as the marginal population model is given as follows: 

)()/( 1 βµ
T

itititit xgXYE
−==

        … (5)
 

Where: 
 

=µ Marginal response 

=⋅)(g Link function  

=itx Covariates 

=β Regression parameter 

 
The link function helps in defining the model as it relates the predictors to the outcome. The choice of link function 
depends on the probability distribution. Examples of common link functions are: 
 
Table 1: Some Common Link functions and Their Inverses 

            Link                               )( ii g µψ = )(1

ii g ψµ −=
 

            Identity                          iµ iψ  

            Log                                 loge iµ iψ
l

 

            Inverse                          
1−

iµ
1−

iψ  

            Inverse-square           
2−

iµ 2

1−

iψ  

            Square=root               iµ 2

1ψ  

Logit log
l

i

i

µ

µ

−1 iψ−+ l1

1
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Probit )(1

iµ−Φ )( iψΦ  

            Log-log                        )](log[log iµ
ll

−− ( )[ ]iψ−− expexp  

Complementary log-log )]1(log[log iµ−−
ll

( )[ ]iψexpexp1 −−  

 
B. Generalized Linear Models 
Normal Linear Model 

;][ βµ
T

iii XYE == ),(~ 2σµii NY
    … (6)

 

Where NYY ,...,1  are independent 

Here the link function is the identify function 

iig µµ =)(  

The model is usually written in the form 

l+= βXy  

Where 

















=
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e
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andthe sei

,
are the independent, identically distributed random variables with 

),0(~ 2σNei       For Ni ,...,1=  

C. Maximum Likelihood (MLE) Estimation of Generalized Linear Models  

Consider independent random variables NYY  , ,1 K  satisfying the properties of a generalized linear model. 

We wish to estimate parameters β which are related to the 
'

i sY  through [ ]i iE Y µ=  and 
 

( ) T

i ig Xµ β= . 

For each
i

Y , the log-likelihood function is 

( ) ( ) ( )i i i i il y b c d yθ θ= + +      
 

. . .(7) 

Also  

[ ]
( )
( )

'

'

i

i i

i

c
E Y

b

θ
µ

θ
= = −        . . .(8)

 

[ ]
( ) ( ) ( ) ( )

( )
3

'' ' '' '

'

i i i i

i

i

b c c b

Var Y

b

θ θ θ θ

θ

 −  =
 
  

   
  

. . .(9) 

 

And   ( ) T

i i i
g Xµ β η= =      

  
. . .(10) 

 

Where
i

X  is a vector with elements ij
x , 1,..., .j p= The log-likelihood function for all the 

'

iY s is 

( ) ( ) ( )
1

N

i i i i i

i

l l y b c d yθ θ
=

= = + +∑ ∑ ∑ ∑  

To obtain the MLE for the parameter j
β  we need  

1 1

. .
N N

i i i i
j

i ij j j i j

l ll
S

θ µ

β β β µ β= =

   ∂ ∂ ∂ ∂∂
= = =   

∂ ∂ ∂ ∂ ∂      
∑ ∑    

  
. . .(11) 

Using the chain rule for differentiation, we will consider each term on the equation (9) separately. 
First, differentiating (5) and substituting (6)  



Adepoju and Afolabi 37. 
 

( ) ( ) ( ) ( )' ' 'i

i i i i i i

i

l
y b c b yθ θ θ µ

θ

∂
= + = −

∂

 
Second, differentiate (6)  

( )

( )

( ) ( )

( )
2

'' ' ''

' '

i i ii

i
i

i

c c b

b b

θ θ θµ

θ θ θ

∂
= +

∂  
  

 

( ) ( )var'i

i i

i

b Y
µ

θ
θ

∂
=

∂
 

 
Finally, from (4) 

.i i i i

ij

j i j i

x
µ µ η µ

β η β η

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
 

 
Hence, the score given in (9) is 
 

( )
( )var

N
i i i

j

i i i i

y
S xij

Y

µ µ

η=

 −  ∂
=   

∂  
∑     

   
. . . (10) 

The variance- covariance matrix of the j
S  has terms 

jk j k
I E S S =    
 
which forms the information matrix I. 
From (10), 
 

( )
( )

( )
( )1 1var var

N N
i i i ii i

jk ik ik

i ii i i i

y y
I E x x

Y Y

µ µµ µ

η η= =

    − −   ∂ ∂ 
=        

∂ ∂        
∑ ∑  

( )

( )

2 2

2
1 var

N
i i ij ik

i

jk

i ii

E y x x
I

Y

µ µ

η=

 −  ∂ =  
∂    

∑       . . . (11) 

because ( ) ( ) 0
i i i i

E y yµ µ− − =    for i j≠  as the
'

iY s  are independent. 

 

Using ( ) ( )
2

vari i iE Y Yµ − =
 

, (7) can be simplified to  

( )

2

1 var

N
ij ik i

jk

i i i

x x
I

Y

µ

η=

 ∂
=  

∂ 
∑  

( )

2

1 var

N
ij ik i

jk

i i i

x x
I

Y

µ

η=

 ∂
=  

∂ 
∑       

 
. . .(12) 

 
The estimating equation for the method of scoring generalizes to  

( ) ( ) ( ) ( )1
1 1 1m m m m

b b I S
−

− − − = +          
. . .(13) 

Where 

⇒ ( )m
b Is the vector of estimates of the parameters 1

,...,
p

β β   
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At the m

th
 iteration 

 

⇒ ( ) 1
1m

I
−

− 
  Is the inverse of the information matrix with elements jk

I  given by (12)  

⇒ ( )1m
S

−
is the vector of elements given (10)  

If both sides of equation (13) are multiplied by 
( )1m

I
−

 we obtain 
( ) ( ) ( ) ( ) ( )1 1 1 1m m m m m

I b I b S
− − − −

= +        . . .(14) 

From (12), I  can be written as 
T

I X WX=  

Where  
W is the N X N diagonal matrix with elements 

( )

2

1

var

i
u

i i

w
Y

µ

η

 ∂
=  

∂ 
        . . .(15) 

The expression on the right-hand side of (10) is the vector with elements

( )
( ) ( )

( )

2

1

1 1 1var var

P N N
ij ik m i i iji i

k

k i ii i i i

x x y x
b

Y Y

µµ µ

η η
−

= = =

−   ∂ ∂
+   

∂ ∂   
∑∑ ∑  

 

evaluated at 
( )1

;
m

b
−

 this follows from equations (12) and (10) .Thus the right hand side of equation (14) can be written 

as  
T

X WZ  

Where Z has elements  

( ) ( )1

1

P
m i

i ik k i i

k i

Z x b y
η

µ
µ

−

=

 ∂
= + −  

∂ 
∑       . . . (16) 

With 
i

µ  and 
i

i

η

µ

∂

∂
 evaluated at

( )1m
b

−
. 

Hence, the iterative equation, can be written as 

 
( )

WZXWXbX
TmT =       … (17)  

 
Thus for GLMs, MLEs are obtained by an iterative weighted least squares procedure. 
Most statistical packages that include procedures for fitting GLM model have an efficient algorithm based on (17). 
 
The following steps are considered; 
 

(i) Begin by using some initial approximation 
( )o

b  to evaluate Z and W. 

(ii) Solve (17) to give 
( )1

b  which in turn is used to obtain better approximations for Z and W, and so on until   
adequate convergence is achieved. 

(iii) When the difference between successive approximations 
( )1m

b
−

 and 
( )m

b  is sufficiently small,
( )m

b  is taken as   
the maximum likelihood estimate 

 
 
3.0 DATA ANALYSIS  
 
The data used in this study comprised 840 diabetes patients observed for a period of five years to examine the effects of 
the following factors; age, sex, Body Mass Index (BMI), blood pressure, exercise and glucose tolerance on their state of 
health using theGeneralised Linear Model (GLM) and Generalised Estimating Equations (GEE) methods. 

Table 3 gives the results of the analysis using the generalized linear model. The intercept is the only significant 
coefficient while the other covariates are insignificant. The intercept however does not have any effect on the patients’ 
health status. The Table shows that the following coefficients; age, BMI and glucose tolerance have negative effect to 
the patients’ health status while blood pressure, sex and exercise have minimal effect on their health status. This result 
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Table 2: Correlation Model 
 

Correlation type Correlation formula Working Correlation Structure 

Independence ( ) ,
ij ik

Cor Y Y o j k= ≠  or 

( )1 ,
ij ik
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0 1 0
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ij ik
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α α

α α
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α α α
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L

M M O M
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ij ik
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1 2
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1
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j j
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α α

α α
α

α α
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−
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M M O M
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Unstructured ( )

( )

,

1 ,

ij ik jk

ij ik

Cor Y Y j k

Cor Y Y j k

α= ≠

= =
 

1

1 2

1

( )

1

j

j j

R

α α

α

α α

 
 

=  
 
 

L

M M O M

L

 

 
shows that GLM may not be an appropriate method for fitting this data, hence a more appropriate or robust method 
should be considered. Since the dependent variable is a dichotomous variable describing whether the covariates 
accumulate to improve the health of the patients or not, the GEE which is a more robust model is therefore used as 
follows: 
 
Table 3: Fitted Generalized Linear Model 
 

 Estimate Std. Error t- value Pr (>|t| ) 

(Intercept ) 1.5631263 0.1770657 8.828 <2e-16*** 

Age -0.0002037 0.0015883 -0.128 0.898 

Sex 0.0076264 0.0760843 0.100 0.920 

BMI -0.0039659 0.0061119 -0.649 0.517 

Blood Pressure 0.0017394 0.0378850 0.046 0.963 

Exercise 0.0037654 0.0760360 0.050 0.961 

GT -0.0033931 0.1314900 -0.026 0.979 

 
 
 
3.1 Generalized Estimating Equations (GEE) 
  
The dependent variable being a dichotomous variable of whether or not the covariates accumulated influence the health 
status, a more robust model of GEE model was used with the binary identity restriction of the dependent variable. 
Table 4 shows that Body Mass Index, Blood Pressure and Glucose Tolerance are the significant covariates whereas the 
remaining factors; age, sex and exercise are not significant. 
  Table 5 compares the general linear statistics of the two methods considered and it shows that the result of GEE is 
better than GLM. The standard error of GEE is 0.03 compared to 0.506 for GLM. 
The Wald test given in Table 6 suggests that age, blood pressure, exercise and glucose tolerance are Gaussian.  
To interpret the group-related effects, we compare these models statistically to determine if the group by time interaction 
terms is jointly significant or not. 
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Table 4:        Generalized Estimating Equation 
 

 Estimated Std. Error Wald test Pr(>| W|) 

( Intercept ) 1.496e+00 1.138e-01 172.756 < 2e-16*** 

Age 3.010e-09 1.053e-07 0.001 0.977 

Sex -4.141e-07 6.586e-07 0.395 0.530 

BMI 1.9056e-07 3.77e-07 0.254 0.001* 

BP -6.801e-08 5.078e-06 0.000 0.000** 

Exercise -2.408e-07 5.270e-02 0.000 1.000 

GT 2.478e-07 9.949e-07 0.062 4e-9*** 

 
 
              Table 5: General Linear Model Statistic for GLM and GEE 
 

 GLM GEE 

P-value 0.9948 0.0067 
Residual standard error  0.506 0.03 

Adjusted R-squared -0.02025 0.7890 

 
 
                    Table 6: Analysis of Wald Statistic Table 
 

 Df X
2
 p(> |Chi| ) 

Age 1 0.235 0.63 
Sex 1 0.663 0.42 
BMI 1 0.663 0.42 
BP 1 0.000 1.00 
Exercise 1 0.000 1.00 
GT 1 0.062 0.80 

 
                Table 7: Independence Correlation Structure 
 

 [ ,1 ] [ ,2 ] [ ,3 ] [ ,4 ] [ ,5 ] [ ,6 ] 

[ 1, ] 1 -0.5600 -0.9835 -0.5600 0.92575 0.34408 
[2, ] -0.5600 1 0.2981 0.9524 -0.16521 -0.22008 
[ 3,] -0.9835 1.2981 1 0.2981 -0.20546 -0.34002 
[ 4, ] -0.5600 0.9524 0.2981 1 -0.16521 -0.22008 
[ 5, ] 0.92575 -0.16521 -0.2055 -0.1652 1 0.92575 
[ 6, ] 0.34408 -0.22008 -0.3400 -0.2201 0.92575 1 

 
From Table 7, it can be deduced that physical activeness and Glucose tolerance are correlated, blood pressure and 
exercise are correlated, and age and Blood pressure are correlated.  
 
             Table 8:    Exchangeable Correlation Structure 
 

 [ ,1 ] [ ,2 ] [ ,3 ] [ ,4 ] [ ,5 ] [ ,6 ] 

[ 1, ] 1 -0.325396 -0.94432 -0.322396 0.076169 0.037863 
[2, ] -0.32540 1 -0.01067 0.102057 -0.030771 0.001356 
[ 3,] -0.94432 -0.10667 1 -0.010667 0.016355 -0.026881 
[ 4, ] -0.32540 0.102057 -0.01067 1 -0.030771 0.001356 
[ 5, ] 0.07617 -0.030771 0.01636 -0.030771 1 1 
[ 6, ] 0.03786 0.001356 -0.02688 0.001356 1 1 

 
From Table 8, it can be deduced that physical activeness and Glucose Tolerance are exchangeable in terms of 
exchanging exercise for glucose tolerance. 
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          Table 9:   AR (1) Correlation Structure 
 

 [ ,1 ] [ ,2 ] [ ,3 ] [ ,4 ] [ ,5 ] [ ,6 ] 

[ 1, ] 0.1781 -0.82553 -0.326551 -0.82553 0.123829 0.037863 
[2, ] -0.8255 0.15229 0.160961 0.15229 -0.037879 0.001356 
[ 3,] -2.3266 0.16096 0.972572 0.16096 0.005093 -0.026881 
[ 4, ] -0.8255   0.15229 0.160961    0.15229 -0.037879 0.001356 
[ 5, ] 0.1238 -0.03788 0.005093 -0.03788 0.012236 -0.002046 
[ 6, ] 0.2150 -0.01135 -0.099735 -0.01135 -0.002691 0.003641 

 
From Table 9 above, it can be deduced that an approximately Auto-Regressive model of lag will be best fitted for the 
dichotomous dependent variable.  
 
          Table 10:  Unstructured Correlation Structure 
 

 [ ,1 ] [ ,2 ] [ ,3 ] [ ,4 ] [ ,5 ] [ ,6 ] 

[ 1, ] 0.78639 -0.286925 -0.97371 -0.286925 0.061120 0.044655 
[2, ] -0.28693 0.085970 -0.00212 0.085970 -0.027275 0.003930 
[ 3 ,] -0.97371 -0.002120 0.54066 -0.002120 0.018353 -0.035924 
[ 4, ] -0.28693 0.085970 -0.00212 0.085970 -0.027275 0.003930 
[ 5, ] 0.06112 -0.027275 0.01835 -0.027275 0.009733 -0.003533 
[ 6, ] 0.04466 0.003930 -0.03592 0.003930 -0.003533 0.005232 

 
 
4.0 RESULTS AND DISCUSSION 
 
In this study, a general linear model was first used determine the factors contributing to the health status of 840 diabetes 
patients and also Generalized Estimating Equation restricted to the same factors was also employed. The General 
Linear Model was unable to accommodate categorical covariates and dependent variables. While the Generalized 
Estimating Equation was able to make room for categorical covariates and dichotomous dependent variable. 
 
 
5.0 CONCLUSION 
 
Having considered the General linear Model and Generalized Estimating Equation, It is seen that GEE performed better 
than GLM with their P-values of 0.00673 and 0.9948 respectively. The results showed that Residual Standard Error of 
GEE is 0.03 compared to the Residual Standard Error of 0.506 for GLM. Lastly, GEE was able to explain the diabetes 
contributing factors with Adjusted R-Squared value of 0.789 compared to GLM with -0.02025. 

The following coefficients; BMI, Blood pressure and Glucose Tolerance are highly significant to diabetes status while 
age, sex and exercise merely contributed.  
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